Generalized Randić Estrada Indices of Graphs
نویسندگان
چکیده
Let G be a simple undirected graph on n vertices. V. Nikiforov studied hybrids of AG and DG defined the matrix AαG for every real α∈[0,1] as AαG=αDG+(1−α)AG. In this paper, we define generalized Randić G, introduce establish bounds Estrada index new matrix. Furthermore, find smallest value α which is positive semidefinite. Finally, present solution to problem proposed by Nikiforov. The consists following: given determine
منابع مشابه
Estrada and L-Estrada Indices of Edge-Independent Random Graphs
Let G be a simple graph of order n with eigenvalues λ1, λ2, · · · , λn and normalized Laplacian eigenvalues μ1,μ2, · · · ,μn. The Estrada index and normalized Laplacian Estrada index are defined as EE(G) = ∑n k=1 e λk and LEE(G) = ∑n k=1 e μk−1, respectively. We establish upper and lower bounds to EE and LEE for edge-independent random graphs, containing the classical Erdös-Rényi graphs as spec...
متن کاملLaplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacia...
متن کاملHermitian-Randić matrix and Hermitian-Randić energy of mixed graphs
Let M be a mixed graph and [Formula: see text] be its Hermitian-adjacency matrix. If we add a Randić weight to every edge and arc in M, then we can get a new weighted Hermitian-adjacency matrix. What are the properties of this new matrix? Motivated by this, we define the Hermitian-Randić matrix [Formula: see text] of a mixed graph M, where [Formula: see text] ([Formula: see text]) if [Formula: ...
متن کاملBounds of distance Estrada index of graphs
Let λ1, λ2, · · · , λn be the eigenvalues of the distance matrix of a connected graph G. The distance Estrada index of G is defined as DEE(G) = ∑ n i=1 ei . In this note, we present new lower and upper bounds for DEE(G). In addition, a Nordhaus-Gaddum type inequality for DEE(G) is given. MSC 2010: 05C12, 15A42.
متن کاملThe Estrada Index of Graphs
Let G be a simple n-vertex graph whose eigenvalues are λ1, . . . , λn. The Estrada index of G is defined as EE(G) = ∑n i=1 e λi . The importance of this topological index extends much further than just pure graph theory. For example, it has been used to quantify the degree of folding of proteins and to measure centrality of complex networks. The talk aims to give an introduction to the Estrada ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10162932